
Resource
Systems Analysis of Immu
nity to Influenza
Vaccination across Multiple Years and in Diverse
Populations Reveals Shared Molecular Signatures
Highlights
d Systems analysis of vaccine immunity to influenza across

seasons and populations

d Signatures of innate immunity and plasmablasts predicted

influenza antibody titers

d Certain vaccine-induced signatures were shared among all

analyzed populations

d Defined baseline signatures of immunogenicity that might

help guide vaccine design
Nakaya et al., 2015, Immunity 43, 1186–1198
December 15, 2015 ª2015 Elsevier Inc.
http://dx.doi.org/10.1016/j.immuni.2015.11.012
Authors

Helder I. Nakaya, ThomasHagan, Sai S.

Duraisingham, ..., Bonnie B. Blomberg,

Shankar Subramaniam, Bali Pulendran

Correspondence
shankar@ucsd.edu (S.S.),
bpulend@emory.edu (B.P.)

In Brief

Pulendran and colleagues describe a

systems-based approach to study

immunity to influenza vaccination in

healthy adults, the elderly, and diabetics

across five influenza seasons. They found

that molecular signatures induced in the

blood days after vaccination predicted

the immunogenicity of the vaccine in

adults and the elderly across multiple

seasons.

Accession Numbers
GSE74817

GSE29619

mailto:shankar@ucsd.edu
mailto:bpulend@emory.edu
http://dx.doi.org/10.1016/j.immuni.2015.11.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.immuni.2015.11.012&domain=pdf


Immunity

Resource
Systems Analysis of Immunity to Influenza
Vaccination across Multiple Years and in Diverse
Populations Reveals Shared Molecular Signatures
Helder I. Nakaya,1,2,16 Thomas Hagan,3,16 Sai S. Duraisingham,4 Eva K. Lee,5 Marcin Kwissa,6 Nadine Rouphael,7

Daniela Frasca,8 Merril Gersten,3 Aneesh K. Mehta,9 Renaud Gaujoux,10 Gui-Mei Li,11,12 Shakti Gupta,3 Rafi Ahmed,11,12

Mark J. Mulligan,7 Shai Shen-Orr,10 Bonnie B. Blomberg,8 Shankar Subramaniam,3,13,14,15,* and Bali Pulendran2,12,*
1School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, São Paulo 05508, Brazil
2Department of Pathology, School of Medicine, Emory University, 1648 Pierce Drive NE, Atlanta, GA 30307, USA
3Department of Bioengineering, University of California, 9500 Gilman Drive MC 0412, San Diego, La Jolla, CA 92093, USA
4Department of Immunology, Churchill Hospital, Oxford University Hospitals NHS Trust, Old Road, Oxford OX3 7J, UK
5Center for OperationsResearch inMedicine &Healthcare, School of Industrial & SystemsEngineering, Georgia Institute of Technology, North
Avenue NW, Atlanta, GA 30332, USA
6Institute for Molecular Engineering, University of Chicago, 5640 S. Elis Avenue, Chicago, IL 60637, USA
7Hope Clinic of Emory University, 500 Irvin Court/Suite 200, Atlanta, GA 30030, USA
8Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136, USA
9Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, 1648 Pierce Drive NE, Atlanta,

GA 30307, USA
10Department of Immunology, Faculty of Medicine, Technion, 1 Efron Street, Haifa 3109601, Israel
11Department of Microbiology and Immunology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA
12Emory Vaccine Center, Yerkes National Primate Research Center, 954 Gatewood Road, Atlanta, GA 30329, USA
13Department of Cellular and Molecular Medicine, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093, USA
14Department of Nanoengineering, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093, USA
15Department of Computer Science and Engineering, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093, USA
16Co-first author

*Correspondence: shankar@ucsd.edu (S.S.), bpulend@emory.edu (B.P.)

http://dx.doi.org/10.1016/j.immuni.2015.11.012
SUMMARY

Systems approaches have been used to describe
molecular signatures driving immunity to influenza
vaccination in humans. Whether such signatures
are similar across multiple seasons and in diverse
populations is unknown. We applied systems ap-
proaches to study immune responses in young,
elderly, and diabetic subjects vaccinated with the
seasonal influenza vaccine across five consecutive
seasons. Signatures of innate immunity and plas-
mablasts correlated with and predicted influenza
antibody titers at 1 month after vaccination with
>80% accuracy across multiple seasons but were
not associated with the longevity of the response.
Baseline signatures of lymphocyte and monocyte
inflammation were positively and negatively corre-
lated, respectively, with antibody responses at
1 month. Finally, integrative analysis of microRNAs
and transcriptomic profiling revealed potential reg-
ulators of vaccine immunity. These results identify
shared vaccine-induced signatures across multi-
ple seasons and in diverse populations and might
help guide the development of next-generation
vaccines that provide persistent immunity against
influenza.
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INTRODUCTION

Seasonal influenza infection kills several hundred thousand peo-

ple every year, with the majority of deaths occurring among the

elderly (Pica and Palese, 2013; Simonsen et al., 2005). Although

vaccination is considered themost effective method for prevent-

ing influenza, it shows limited efficacy in the elderly (Sasaki et al.,

2011). The vaccine recommended for this age group is the

inactivated influenza vaccine that contains virus hemagglutinin

(HA) proteins from three (trivalent, TIV) or four of the circulating

influenza H1N1, H3N2, and B strains. The lower efficacy of the

influenza vaccine in elderly compared to young adults has

been associated with immunosenescence (Duraisingham et al.,

2013), such as impaired generation of antibody-secreting cells

(ASCs) (Sasaki et al., 2011) and memory CD8+ T cells (Wagar

et al., 2011) and CD4+ T cells (Kang et al., 2004). However, the

molecular mechanisms underlying the decreased vaccine effi-

cacy remain unexplored.

Systems vaccinology is an emerging field that applies systems

biology approaches and predictive modeling to vaccinology and

provides a powerful tool for unraveling the molecular mecha-

nisms of vaccine immunity (Pulendran, 2014; Pulendran et al.,

2010). Recently, systems vaccinology has been successfully

used to study the immune response to the influenza vaccine in

young adults (Bucasas et al., 2011; Cao et al., 2014; Franco

et al., 2013; Furman et al., 2013; Nakaya et al., 2011; Tsang

et al., 2014) as well as to other vaccines such as the yellow fever

(Gaucher et al., 2008; Querec et al., 2009) and meningococcus
c.
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(Li et al., 2013) vaccines. These studieswere able to identify gene

signatures (Nakaya et al., 2011), as well as cellular compositions

and gene modules (Furman et al., 2013), post-vaccination that

are predictive of the later antibody response vaccination. In addi-

tion, such approaches provided important insights into the path-

ways driving immune responses to vaccination (Oh et al., 2014;

Ravindran et al., 2014).

However, several fundamental issues in the field remain un-

addressed. First, there is still no comprehensive analysis of

the similarity of signatures to influenza vaccination across mul-

tiple seasons (Pica and Palese, 2013). This is a crucial issue

because the virus strains in the vaccine can change from

year to year and the impact of these variations on transcrip-

tional signatures is unknown. Second, there is limited informa-

tion about the gene regulatory networks and cellular responses

that underlie the sub-optimal immunity observed in the elderly

population. Third, because all previous studies have focused

on signatures that predict the antibody response at 4 weeks

after vaccination, the extent to which transcriptional signa-

tures are associated with the longevity of the antibody

response has not been examined. This analysis is important

for understanding how innate immunity can generate long-last-

ing antibody responses to influenza vaccination. Finally, little is

known about the role of microRNAs (miRNAs) in fine-tuning

the transcriptional responses of immune cells after influenza

vaccination.

To address these issues, we used systems vaccinology ap-

proaches to examine >400 young and elderly adults, including

diabetics, vaccinated with seasonal TIV during five consecutive

influenza seasons (2007–2011). These subjects included 212

individuals from our study and 218 individuals from a previously

published study (Franco et al. 2013). Our systems analysis iden-

tified universal signatures of immunity to vaccination spanning

multiple years in diverse human populations including the

young, elderly, and diabetic. Integrative analysis of microRNAs

and transcriptomic profiling revealed potential regulators of

vaccine immunity. These results can help guide the development

of next-generation vaccines that provide persistent immunity

against influenza.

RESULTS

Antibody Responses to Influenza Vaccination Correlate
with Age but Not Gender, Race, or Diabetic Status
We vaccinated with TIV a total of 212 subjects across 5 influenza

vaccine seasons from 2007 to 2011, among whom 54 were

elderly (>65 years old in 2010 and 2011 cohorts) (Figures S1A

and S1B). The 2011 cohort also included 17 subjects diagnosed

with type 2 diabetes (T2D). Overall, there was a 65:35 ratio of fe-

males to males, and the majority of subjects were of European

descent (Figure S1B). Blood samples were collected at baseline

(day of vaccination) and at the time points indicated (Figure 1A).

We performed microarray analyses on the peripheral blood

mononuclear cells (PBMCs) as indicated (Figure 1A). For the

2008 and 2009 seasons, we included in our analyses published

data from a previous study by Franco et al. (2013) containing

218 additional subjects. For a subset of the 2010 season cohort,

fluorescence-activated cell sorting (FACS) measurements as

well as miRNA profiling were also performed (Figure 1A). The
Imm
entire dataset is publicly available online at Immport (Bhatta-

charya et al., 2014) (http://immport.niaid.nih.gov/).

We evaluated the plasma antibody responses of all vacci-

nated individuals via hemagglutination-inhibition (HAI) antibody

titer assays. The individual antibody response for each of the

three influenza strains included in the vaccine was calculated

as the fold change between the HAI titer at day 28 relative to

the baseline titer. We then defined the magnitude of the HAI

response as the maximum fold change among the three influ-

enza strains (Figure 1B; Nakaya et al., 2011). Subjects were

classified as ‘‘high responders’’ if (1) their HAI response had

at least a 4-fold increase at 28 days (Sullivan et al., 2010) and

(2) the day 28 antibody titer was 1:40 or more for at least one

strain; subjects were classified as ‘‘low responders’’ otherwise.

In the 2010 and 2011 seasons, in which elderly subjects were

included, antibody responses showed a significant decrease

with age (Figures 1B, 1C, and S1C), consistent with previous

studies (Seidman et al., 2012). Vaccines from different seasons

induced varying levels of HAI responses, and there was a sig-

nificant decrease in the response with age (Figure 1C). Subjects

vaccinated during the 2010 season, the year after the H1N1

2009 pandemic, generated the strongest HAI responses. There

was no significant difference in antibody response based on

gender (Figure S1D), diabetic status (Figure S1E), or race

(data not shown). There was no significant difference in the

response between males and females in any of the seasons

examined (data not shown).

Gene Signatures of Antibody Responses acrossMultiple
Seasons in the Young and the Elderly
In order to identify transcriptional pathways associated with

the antibody response to vaccination, we performed gene set

enrichment analysis (GSEA) (Subramanian et al., 2005) on genes

correlated with the HAI response in each influenza season (Fig-

ure 2A). For this, we used a set of blood transcriptional modules

(BTMs) previously identified by our group through large-scale

network integration of publicly available human blood transcrip-

tomes (Li et al., 2014). BTMs related to the induction of inter-

ferons as well as the activation of dendritic cells (Figures 2A

and 2B) were enriched on days 1 and 3 after TIV vaccination,

whereas modules related to T cells at these time points were

negatively associated with the antibody response. These results

were validated by analysis of both seasons of the Franco et al.

(2013) dataset. On day 7, there was a robust enrichment of

ASC and cell cycle-related modules, consistent with our original

study (Nakaya et al., 2011).

Additionally, we compared transcriptional responses based

on gender, age, race, or diabetic status. We first performed dif-

ferential expression analysis between these groups (male versus

female, type-2-diabetes-positive versus -negative, and Euro-

pean versus African and/or Asian) using fold change expression

data from day 3 and day 7. There were very few differentially ex-

pressed genes based on gender (Figure S2A) or race (data not

shown), indicating similar responses after vaccination. Compar-

ison of gene expression between type-2-diabetes-positive and

-negative subjects revealed amodest number of differentially ex-

pressed genes (Figure S2B), but GSEA on genes ranked by cor-

relation with the day 28 HAI response in these two groups

showed a high degree of overlap in the modules associated
unity 43, 1186–1198, December 15, 2015 ª2015 Elsevier Inc. 1187
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Figure 1. Experimental Approach and Humoral Immunity to Influenza Vaccination in Young and Elderly

(A) Experimental approach used to study five consecutive influenza vaccination seasons. Microarray experiments and HAI assays were used to obtain the gene

expression profiles and antibody responses of 413 TIV vaccinees. Flow cytometry and miRNA expression data were obtained for vaccinees from 2010 season.

For 2008 and 2009 seasons, publicly available data (Franco et al., 2013) were included.

(B) HAI responses by season. ThemaximumHAI response (highest day 28-day 0 fold-induction among all three strains) is shown for all 212 subjects separated by

flu season, along with box plots indicating the first and third quartiles and median. For 2010 and 2011, subjects are also separated into young (<65 years old) and

elderly (65 or older). p values represent results of independent two-sample t test between responses of young and elderly.

(C) Correlation of HAI responses with age in the 2010 season and 2011 season. R and p represent the Pearson correlation coefficient and associated p value,

respectively.

See also Figure S1.
with a high antibody response (Figure S2C). Based on the simi-

larity of these transcriptional responses, we decided not to

segregate subjects based on gender, race, or diabetic status

in subsequent analyses.

Given that we could identify pathways that consistently corre-

lated with the magnitude of HAI response (Figure 2A), we sought

to identify transcriptional signatures of immunogenicity across

multiple influenza seasons. In our previous study, we have

used DAMIP (discriminant analysis via mixed integer program-

ming) (Brooks and Lee, 2010) to find sets of 3–5 discriminatory

genes that could predict the antibody response of subjects

from the 2007–2009 seasons (Nakaya et al., 2011). Here we

applied DAMIP to a larger number of subjects across a greater

number of influenza vaccine seasons (Figure S3), as described

in the Experimental Procedures and Supplemental Experimental

Procedures. Here DAMIP was able to correctly predict the HAI

response in the blind testing group with 67.6%–70.0% accuracy

(Tables S1 and S2). Consistent with our previous work, the most

frequently selected genes included a large number of ASC genes

(Table S1).

Given the robustness of the module-level responses across

different TIV seasons, we wanted to investigate whether mod-

ule-level features were capable of accurately predicting vac-

cine-induced immunity in a multi-year dataset and in the elderly.

Therefore, we first generated BTM normalized enrichment
1188 Immunity 43, 1186–1198, December 15, 2015 ª2015 Elsevier In
scores for each subject using single-sample GSEA (ssGSEA)

(Barbie et al., 2009) and then used these scores as inputs to an

artificial neural network classifier (Dreiseitl and Ohno-Machado,

2002) (see Supplemental Experimental Procedures for details). In

brief, the young subjects from all seasons were randomly divided

into training and testing groups in an 85%/15% ratio. For each

bootstrapping cycle, we split the young subjects (from all years)

as 85% (young training set) and 15% (young testing set) and put

all elderly aside (from both 2010 and 2011 years, the elderly

testing set). Then, we used the young training set to select the

features (in this case the BTMs) and to check their performance

in the same young training set. Next, we checked the perfor-

mance of these ‘‘predictive BTMs’’ in the young testing set and

elderly testing set. This process was repeated for 100 trials in or-

der to ensure that the performance was robust across many

random divisions of the data. For each of the 100 times that

this 85%/15% split in young subjects was done, we tested the

prediction on the same elderly testing set. With this approach,

we identified BTMs that predicted HAI responses in both the

young and elderly groups with accuracies ranging between

79.0% and 80.2% and between 64.7% and 72.3%, respectively,

using both day 3 and day 7 signatures (Figure 2C). Examination

of the modules most frequently selected by the algorithm in the

100 randomized trials revealed pathways related to innate im-

mune cell responses as well as leukocyte differentiation and
c.



Figure 2. Signatures Associated with the Antibody Response Induced by TIV

(A) Heat map of blood transcription modules (BTMs, rows) and TIV seasons (columns) whose activity at days 1, 3, or 7 after vaccination is associated with HAI

response at day 28 after vaccination. Gene set enrichment analysis (GSEA, nominal p < 0.05; 1,000 permutations) was used to identify positive (red), negative

(blue), or no (gray) enrichment of BTMs (gene sets) within pre-ranked gene lists, where genes were ranked according to their correlation between expression and

HAI response. Seasons labeled in blue are from Franco et al. (2013) dataset. Modules shown are those consistently enriched in at least 70%of seasons on a given

day. Abbreviation is as follows: NES, normalized enrichment score.

(B) Genes in BTMM165; each ‘‘edge’’ (gray line) represents a coexpression relationship, as described in Li et al. (2014); colors represent the mean correlation for

seven TIV seasons between baseline-normalized gene expression at day 3 and HAI response at day 28 after vaccination.

(C and D) Identification of BTMs that predict antibody responses via neural network nalysis. Single sample GSEA (Barbie et al., 2009) enrichment scores were

generated for each BTM on day 3 and day 7 after vaccination in 85% of the young subjects (training set) and used as inputs to an artificial neural network classifier

to predict the day 28 antibody responses, in the remaining 15% of the young (young test set) or the elderly (elderly test set) subjects (see Supplemental

Experimental Procedures for details). The mean accuracies and standard deviations out of 100 randomized trials are shown, along with the frequency with which

each module was selected by the algorithm as an input to the classifier. In (C) ‘‘young’’ is <65 years and ‘‘elderly’’ >65 years and in (D) ‘‘young’’ is <40 years and

‘‘elderly >65 years.

See also Figures S2–S4.
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antigen presentation on day 3 and B cell/immunoglobulin pro-

duction and cell cycle pathways on day 7 (Table S3).

Interestingly, we observed similar classification accuracy in

both the young and elderly test sets when using the predictive

signatures trained on the young dataset (Figure 2C). This sug-

gests that although the elderly had lower antibody responses

to vaccination, the molecular signatures that were predictive of

high HAI response remained the same. One potential caveat to

this was that in the analysis in Figure 2C we had defined young

as <65 years and elderly as >65 years, a narrow chronological

distinction that could hamper quantitative analysis of age-related

effects. To address this issue, we performed additional analysis

by removing the intermediate-age subjects (between 40 and 65

years) from our analysis (Figure 2D). Thus here we defined young

as subjects younger than 40, and elderly as subjects older than

65. The results are similar to our original work (Figure 2C versus

Figure 2D). In addition, as the 2010 cohort has a sharper distinc-

tion between the young and the elderly (Figure S1A), we per-

formed GSEA on genes ranked by correlation with HAI response

(similar to the analysis of Figure 2A) for young and elderly sub-

jects in the 2010 cohort (Figure S4). There were a number of

consistently enriched modules in both the young and elderly, in

particular those relating to the interferon response and activation

of dendritic cells on day 1 and the plasmablast response on day

7. These results suggest that there were consistent transcrip-

tional signatures associated with the day 28 antibody response

in both groups. Together these results demonstrate that mod-

ule-level features are able to successfully predict vaccine immu-

nogenicity in TIV seasons in both young and elderly vaccinees.

Baseline Signatures Associated with Antibody
Responses
We also examined whether there were pre-vaccination tran-

scriptional signatures that were associated with antibody re-

sponses. Although there has been previous work aimed at iden-

tifying baseline cellular and molecular predictors of influenza

vaccine response (Frasca et al., 2010; Furman et al., 2013; Tsang

et al., 2014), these studies examined subjects within only a single

influenza season, and the robustness of these signatures in

predicting immunity to influenza vaccination acrossmultiple sea-

sons has not been determined. First, we performed GSEA (Sub-

ramanian et al., 2005) in each season by using genes ranked by

correlation between baseline expression and the HAI response.

However, this approach resulted in little overlap between sea-

sons, with no module consistently enriched in more than three

out of five seasons (Figure S5). This might have been due to a

reduced signal-to-noise ratio and increased batch effects owing

to the inability to use fold-change expression at baseline.

Although we attempted to adjust for batch effects in the day

0 expression data across seasons by using the ComBat software

(Johnson et al., 2007), these effects might have not been

completely removed.

To increase the power of this analysis so as to detect the more

subtle transcriptional signatures at baseline, we repeated the

procedure with all five seasons combined. In addition, publicly

available data from previously published influenza vaccine

studies by Franco et al. (2013) and Furman et al. (2013) were

included as independent validation sets (see Supplemental

Experimental Procedures for details). This approach revealed
1190 Immunity 43, 1186–1198, December 15, 2015 ª2015 Elsevier In
several B-cell- and T-cell-related modules whose expression

pre-vaccination was positively correlated with an increased anti-

body response to vaccination in all studies (Figure 3A). In

contrast, modules related to monocytes were negatively corre-

lated with antibody responses (Figures 3B–3G). Interestingly,

contained within the monocyte-related modules were genes

such as TLR4, TLR8, NOD2, and ASGR2, which encode pro-

teins involved in innate sensing, and genes encoding IFN-gR,

IL-13R, TIMP2, LYN, SYK, and other molecules involved in

inflammation. This supports the concept that inflammatory re-

sponses at baseline might be detrimental to the induction of vac-

cine-induced antibody responses (Haq and McElhaney, 2014;

Pawelec et al., 2014). Investigation of the correlation with anti-

body response at a gene level (Figures 3B–3G) highlights the

strength of pathway-level analyses: although the module enrich-

ment was consistent across datasets, the individual genes

contributing to this enrichment varied from study to study.

Signatures Inducedby Vaccinationwith TIV in Youngand
Elderly
We next investigated the influence of age on the vaccine-

induced transcriptional signatures. To this end, we first identified

differentially expressed genes after vaccination in the young

versus elderly subjects from the 2010 season (Figure 4A) (in

which there is a sharp chronological separation between the

young and the elderly [Figure S1A]). By far the largest difference

in overall expression between the two groups occurred on day 1,

where the young exhibited a much greater number of both up-

and downregulated genes. Weighted correlation network anal-

ysis (WGCNA) (Langfelder and Horvath, 2008) was used to find

clusters of highly correlated genes among the TIV-regulated

genes in young (clusters Y1–Y6) and elderly (clusters E1–E5)

(Figure 4B). This method compares the correlation in expression

patterns among genes across all young or elderly subjects and

utilizes hierarchical clustering with dynamic tree cut to define

modules of genes that are temporally co-expressed within

each group. Genes in common to clusters Y4 and E3 were asso-

ciated with antibody-secreting cells (ASCs), whereas the overlap

between clusters Y1 and E1 contained several interferon-related

genes (Figure 4C). Although the genes shared by clusters from

young and elderly vaccinated individuals had similar temporal

expression profiles, the magnitude of the expression of inter-

feron-related genes differed, being higher in young individuals

(Figure 4C).

We then performed GSEA using genes ranked by their corre-

lation with age to identify modules with enriched expression in

either young or elderly vaccinees (Figure 4D). It is important to

note that in this analysis we used age as a quantitative variable,

rather than arbitrarily splitting the cohorts into young versus

elderly. In order to ensure the robustness of our results, we per-

formed this analysis separately on the two trials containing

elderly subjects (2010 and 2011) and identified modules that

were consistently enriched in both seasons. Natural killer (NK)

cell-related modules showed increased expression with age on

both day 3 and day 7 after vaccination, and several monocyte

modules showed increased expression with age on day 7. In

contrast, many B cell modules showed decreased expression

in older subjects on both day 3 and day 7. These results indicate

that elderly subjects might be mounting a significant innate
c.



Figure 3. Baseline Signatures Are Associated with the Antibody Response

(A) Heat map of BTMs (rows) and TIV studies (columns) whose activity before vaccination is associated with HAI response at day 28 after vaccination. GSEA

(nominal p < 0.05; 1,000 permutations) was used to identify positive (red) or negative (blue) enrichment of BTMs (gene sets) within pre-ranked gene lists, where

genes were ranked according to their correlation between expression and HAI response. Circle size is proportional to the normalized enrichment score (NES).

Numbers in parentheses next to each study represent number of subjects in the study. Modules shown are those consistently enriched in at least three out of four

studies.

(B–G) Heat maps of genes within BTMs from (A); colors represent the mean correlation in each study between baseline gene expression and HAI response at day

28 after vaccination.

See also Figure S5.
response, but that their adaptive B cell response is diminished.

One of the modules showing increased expression in the elderly

was BTM M61.0 (Figure 4E), which contains many killer cell

immunoglobulin-like receptor (KIR) and lectin-like receptor

(KLR) genes. These are inhibitory receptors that suppress the

cytotoxic activity of NK cells when bound to MHC I molecules

(KIRs) and cadherins and other ligands (KLRs) (Long et al., 2013).

Next, we examined whether or not any of the age-related tran-

scriptional differences were also associated with impaired anti-

body responses. By plotting the age-based enrichment score

of eachmodule against its antibody response-based enrichment

score on day 7, we were able to identify five modules whose

expression varied with age and were associated with either a

high or low antibody response (Figure 4F). Two B cell modules,

M47.0 and M69, showed increased expression in younger sub-
Imm
jects and in subjects with high antibody responses, whereas

three monocyte- and myeloid-cell-related modules, S4, M4.3,

and M11.0, were enriched in the elderly and were also associ-

ated with a decreased antibody response in the 2010 and 2011

seasons. Interestingly, two of these modules, M11.0 and M4.3,

showed association with an increased antibody response in

the 2007 and 2008 seasons (Figure 2A), indicating that this asso-

ciation is not consistent across all five seasons on day 7. These

results demonstrate that TIV induces distinct but overlapping

transcriptional responses in the young versus elderly. The early

innate response at day 1, comprised of antiviral and type IFN-

related genes, seems to be impaired in the elderly. In contrast,

several transcriptional modules related to NK cells and mono-

cytes appear to have enhanced expression at baseline and after

vaccination, in the elderly relative to the young.
unity 43, 1186–1198, December 15, 2015 ª2015 Elsevier Inc. 1191



Figure 4. Molecular Signatures Induced by Vaccination with TIV in Young Adults and in Elderly

(A) Number of genes differentially expressed (log2 fold-change > 0.2 and t test p value < 0.01) in young (<65 years) (left) and elderly (R65 years) (right) vaccinees on

days 1, 3, 7, and 14 after vaccination (2010 season).

(B) Heat map of highly correlated gene modules within the differentially expressed genes in (A) for young (rows, modules Y1–Y6) and elderly (columns, modules

E1–E5), generated by weighted correlation network analysis (Langfelder and Horvath, 2008). The number of genes in each module is shown in parentheses and

the number of genes in common between two modules is shown inside the squares. Colors represent the Fisher’s exact test p value of the overlap between

clusters. The 61 genes in common between Y4 and E3 are associated with ASCs.

(C) Temporal expression patterns of 197 interferon-related genes in common betweenmodules Y1 and E1 from (B). Black line represents the mean fold change of

all genes.

(D) BTMs (rows) whose activity at days 3 or 7 after vaccination (columns) is associated with the age of vaccinees from 2010 and 2011 seasons. GSEA (nominal p <

0.05; 1,000 permutations) was used to identify positive (red) or negative (blue) enrichment of BTMs (gene sets) within pre-ranked gene lists, where genes were

ranked according to their correlation between expression and increasing age. The intensity of the color and the size of the circles represent the normalized

enrichment score (NES) of GSEA. In this analysis we used age as a quantitative variable, rather than arbitrarily splitting the cohorts young versus elderly. Modules

shown are those consistently enriched in both seasons.

(E) Genes in BTMM61.0; each ‘‘edge’’ (gray line) represents a coexpression relationship, as described in Li et al. (2014); colors represent the correlation for 2010

season between baseline-normalized gene expression at day 3 after vaccination and the age of vaccinees.

(F) BTMs whose activity at day 7 after vaccination is correlated with the age of vaccinees (x axis) and/or is correlated with HAI response (y axis) in both 2010 and

2011 seasons. Values represent the mean of the NES obtained independently for each season. NES receives a value of zero if the BTM is not significantly

associated with age or HAI response (nominal p < 0.05; 1,000 permutations) in either season.

See also Figures S6 and S7.
Cellular Responses Induced by Vaccination with TIV in
the Young and Elderly
The aforementioned transcriptional signatures of NK cells and

monocytes in the elderly subjects could have been caused by

de novo transcriptional induction of genes expressed in these

cell types or by changing representations of these cell types

within the PBMC compartment. In order to distinguish between

these two possibilities, we performed FACS analysis on PBMCs

in a subset of subjects from the 2010 cohort. Our analysis

showed that proportions of total NK cells in elderly subjects

were higher than those of young subjects at baseline as well as

at all the time points studied (days 0–14). Of note, vaccination

induced an increase in the percentage of NK cells in the elderly

subjects; in contrast, in the young there was a reduction in the

percentage of NK cells on day 1 after vaccination (Figure 5A).

Similar trendswere observed in the absolute numbers of NK cells

(data not shown). To examine this trend in the 2011 cohort,

where FACS data were unavailable, we used a deconvolution
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method (Abbas et al., 2009; Gaujoux and Seoighe, 2013;

Shen-Orr and Gaujoux, 2013) to estimate cell frequencies based

on gene expression of amixed cell population. This approach re-

vealed increased estimated NK cell frequencies in the elderly on

day 3 after vaccination when compared to young, agreeing with

the 2010 FACS data (data not shown). These results confirm our

findings at a molecular level (Figure 4D) and show that the in-

crease in NK-cell-related expression in the elderly is due in

part to enhanced representation of this cell population after

vaccination.

We also explored the distribution of the NK compartment into

three subpopulations: CD56++ NK (CD56bright), CD56++CD16+

NK, and CD56dimCD16++ NK (Figure 5B). These NK cell subsets

have distinct functions: CD56dimCD16++ cells, the most abun-

dant population of NK cells in the blood, have significantly higher

cytotoxic activity, whereas CD56++ cells are characterized by

increased cytokine production and can exhibit immunoregula-

tory properties under certain conditions (Poli et al., 2009). We
c.



Figure 5. Flow Cytometry Analysis of

NK Cells in Young and Elderly after TIV

Vaccination

(A) Changes in total NK cell population after

vaccination represented as percent within all

PBMCs for young and elderly. Mean ± SEM.

(B) Blood NK cells were defined within the

CD3�CD4�CD19�CD14� PBMCs. Dot blot re-

presents three distinct NK cell populations defined

by CD56 and CD16 markers: CD56++ NK,

CD56++CD16+ NK, and CD56dimCD16++ NK.

(C) Kinetics of magnitudes of CD56++ NK,

CD56++CD16+ NK, and CD56dimCD16++ NK cell

subsets in young (left) and elderly (right) after

vaccination. Mean ± SEM.

Areas under curve (AUC) in (A) and (C) were

calculated to compare magnitudes of total NK cells

and NK cells subsets between young and elderly

cohorts throughout the study duration (days 0–14)

and compared by t test. Changes of each of the NK

subset on the indicated time points after vaccina-

tion were compared to the day 0 (baseline) time

point by t test.

(D) Activation of each of the NK cell subsets were

assessed by CD69 staining and comparedwith day

0 (baseline) by t test. Data are represented as the

geometric mean fluorescence intensity (MFI) for

young (left) and elderly (right) at each time point,

mean ± SEM.

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
observed a higher frequency of CD56dimCD16++ cells coincident

with a lower frequency of CD56++ cells in the elderly at baseline,

consistent with previous studies (Figure 5C; Solana et al., 2014).

The distribution of these subpopulations was relatively stable

during the response, with CD56dimCD16++ cells showing a small

but significant increase in the elderly on day 1 after vaccination

and CD56++ cells increasing in the young on day 7. Additionally,

we examined the activation of these subsets through immuno-

staining for CD69, a marker associated with increased cytotox-

icity and IFN-g production (Figure 5D; Clausen et al., 2003;

Gorski et al., 2006). Elderly subjects showed increasing activa-

tion after vaccination in all three subsets, with highest expression

on day 3. In contrast, the young exhibited activation of the

CD56dimCD16++ subset as measured by CD69 expression only

on day 1 and at a lower level than in the elderly.

In addition to NK cells, we also observed higher proportions of

monocytes among the elderly at baseline and during the

entire duration of the study compared to young subjects (Fig-

ure S6A). In both groups, the percentage of total monocytes in

PBMCs increased substantially on day 1 after vaccination,

then returned to or below baseline levels. We further examined

the distribution of monocytes into three subsets: ‘‘classical’’

(CD14+CD16�), ‘‘intermediate’’ (CD14+CD16+), and ‘‘non-clas-

sical’’ (CD14dimCD16++) (Figure S6B). The distribution of mono-

cyte subsets was similar in both groups, with the elderly having

a slight increase in intermediate monocytes compared to young

(Figure S6C). The activation of these subsets was also analyzed

by immunostaining for CCR5, a receptor for a number of inflam-

matory cytokines, and CD86, a costimulatory molecule involved

in T cell activation (Figure S6D). In both the young and elderly,

CCR5 expression peaked in classical and intermediate mono-
Imm
cytes on day 1 after vaccination, corresponding with the inflam-

mation associated with the innate immune response. Elderly

subjects showed increased CCR5 expression in classical and in-

termediate monocytes compared to the young, whereas young

subjects had higher CD86 expression in these subsets. These re-

sults are consistent with the transcriptional changes observed

(Figure 4) and support the concept that persistent and excessive

inflammatory responses might be detrimental to the induction of

vaccine-induced antibody responses (Frasca et al., 2014; Haq

and McElhaney, 2014; Pawelec et al., 2014).

Molecular Signatures Associated with the Persistence
of Antibody Responses
A desirable feature of a good vaccine is the ability to induce long-

lasting protection from infection. To investigate how effectively

the influenza vaccine generates a long-lived response and iden-

tify the mechanisms responsible for this response, we measured

antibody titers in a subset of subjects at 180 days (D180) after

vaccination. The antibody responses peaked at day 28 (D28),

with a significant decline in most subjects by D180 (Figure 6A).

By applying the same criteria for seroconversion used for the

D28 high- versus low-responder classification to the D180

antibody responses, we saw that just over half of D28 high re-

sponders maintained their responder status on day 180 (‘‘persis-

tent’’ responders), whereas the remainder no longer met the

criteria for seroconversion on day 180 (‘‘temporary’’ responders).

Because the D180 antibody titer shows significant dependence

on the original antibody response generated on day 28 (Fig-

ure 6B), examining the molecular profile associated with the

D180 response would identify many of the mechanisms respon-

sible for generating the D28 response. In order to study the
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Figure 6. Signatures Associated with the Persistence of TIV-Induced Antibody Response

(A) HAI response (fold change of HAI titer relative to baseline) through 180 days for temporary (n = 28) and persistent (n = 34) responders. Temporary responders

met the FDA criteria for seroconversion (minimum 1:40 titer and 4-fold increase after vaccination) on day 28 but not on day 180, whereas persistent responders

met the criteria on both days.

(B) Comparison between day 28 and day 180 HAI responses. Each symbol represents a single vaccinee and the color represents the season that they were

vaccinated (n = 62). Black lines represent the regression line (Pearson) for all vaccinees combined. Day 180/day 28 residual is computed as the (vertical) distance

from each sample to the regression line.

(C) Comparison between ‘‘S3 Plasma’’ BTM activity and the HAI responses at day 28 after vaccination. Each symbol represents a single vaccinee and the color

represents the season that they were vaccinated (n = 62). Black lines represent the regression line (Pearson) for all vaccinees combined.

(D) Comparison between ‘‘S3 Plasma’’ BTM activity and the HAI D180/D28 residual. Each symbol represents a single vaccinee and the color represents the

season that they were vaccinated (n = 62). Black lines represent the regression line (Pearson) for all vaccinees combined.

(E) Genes in BTMM51.0; each ‘‘edge’’ (gray line) represents a coexpression relationship, as described in Li et al. (2014); colors represent the correlation between

baseline-normalized gene expression at day 3 after vaccination and the D180/D28 residual.

(F) BTMs (bars) whose activity at day 7 after vaccination is significantly associated with the HAI D180/D28 residual (GSEA; nominal p < 0.05; 1,000 permutations).

Vaccinees from 2007 to 2010 seasons were combined. BTMs related to T cell functions (pink bars) or monocyte functions (purple bars) are shown.
relative persistence of the response, we calculated residuals

from a linear fit between the D28 and D180 responses, thereby

removing the effect of the D28 response on the D180 response.

We observed that subjects with a higher D28 titer had a greater

decrease in HAI response between D28 and D180, indicating

increased difficulty to maintain higher levels of antibodies. The

linear fit therefore represents the expected D180 response given

a particular initial D28 response, and the residual can be consid-

ered an ‘‘adjusted’’ D180 response taking into account the orig-

inal D28 response. Subjects with positive residuals have a more

persistent response, whereas a negative residual represents a

waning response. As expected, correlation analysis of plasma-

blast module BTM S3 shows a positive association with the

D180 antibody response due to the effect of D28 antibody re-

sponses, generated through plasmablast expansion (Figure 6C).

However, when we performed correlation between the plasma-

blast module activity and the D180/D28 residual, we no longer

saw an association with the plasmablast expression (Figure 6D).

This result suggests that factors other than the expansion of

plasmablasts are responsible for maintaining a persistent anti-

body response.

To identify the pathways associated with a persistent or

waning response, we performed GSEA on genes correlated

with the D180 versus D28 residual. Among the BTMs most en-

riched in subjects with a persistent response on both days 3
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and 7 were several modules associated with cell movement

and adhesion, such as BTM 51 (Figure 6E). In fact, one of the

genes in module M51 that was highly correlated with the

response persistence was P-selectin (SELP), which plays an

important role in the adhesion and extravasation of leukocytes

out of the blood circulation and into organs or tissues (Wang

et al., 2007). In addition, the day 7 expression of a number of

T-cell-related modules was negatively associated with the

D180/D28 residual, indicating that increased T cell responses

might potentially result in more transient antibody responses

(Figure 6F). The plasmablast signature at day 7, which was pre-

dictive of the HAI titers at day 28, did not correlate with the D180/

D28 residual (Figure 6D).

Post-transcriptional Gene Regulation of the Immune
Response to Vaccination
MicroRNAs (miRNAs) have been identified as key regulators of

gene expression at a post-transcriptional level (Filipowicz

et al., 2008). Although there is some knowledge about miRNA

regulation of immune pathways (Lodish et al., 2008), their role

in responses to vaccination remains unaddressed. To assess

whether or not miRNAs contribute to the differences in response

we saw between young and elderly vaccinees, we measured the

miRNA expression profiles of 672 human miRNAs on days 1, 3,

and 7 after vaccination from a subset of subjects in the 2010
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Figure 7. MicroRNA Expression Profiling of Young and Elderly TIV Vaccinees

(A) Heat map of miRNAs (rows) up- (red) or downregulated (blue) at days 1, 3, and 7 after vaccination in young and elderly (columns); paired t test (p < 0.05); total

number of differentially expressed miRNAs are shown at the bottom.

(B) MicroRNAs whose expression is positively or negatively correlated with HAI response in young and elderly; Pearson correlation (p < 0.05).

(C) Identification of networks potentially regulated by miRNAs. Activity of BTMs was determined by single-sample GSEA (Barbie et al., 2009) and correlated with

the expression of miRNAs. TargetScan database (Garcia et al., 2011) was used to identify the potential target genes of miRNAs.

(D) Heat map of BTMs (rows) whose activity at day 1 after vaccination correlated with the baseline-normalized expression of miRNAs (columns) at the same time

point. Positive and negative correlations are shown in red and blue, respectively.

(E) Genes in BTMM75; each gray line represents a coexpression relationship, as described in Li et al. (2014); each brown line connects a miRNA and its potential

target gene; each blue line represents a negative correlation (Pearson, p < 0.15) between the expression of miRNA and the expression of the potential target gene;

colors represent the mean correlation between baseline-normalized gene expression at day 1 and HAI response at day 28 after vaccination in the 2010 TIV

season.
cohort (Figure 7A). We saw a significant difference in the miRNA

profiles between these two groups. Whereas a majority of the

differentially expressed miRNA in the elderly were upregulated

after vaccination, particularly on days 1 and 7, the young

exhibited predominantly downregulation of miRNA. We also

identified miRNA whose expression correlated with the day 28

antibody response (Figure 7B). We again saw differences be-

tween the young and elderly subjects, with the elderly having a

larger number of miRNA negatively correlating with the antibody

response when compared with the young. These results suggest

that miRNA might indeed be important regulators of the immune

response to influenza vaccination. miRNA expression reduces

the translation of its target genes through mRNA degradation

or silencing via the RNA-induced silencing complex, so the in-

crease in miRNA expression in the elderly after vaccination sug-

gests a possible mechanism for the impaired responses in this

population that merits further exploration.

To identify the miRNA that regulate particular immune path-

ways during vaccine response, we implemented a strategy to

integrate the mRNA andmiRNA omics-level measurements (Fig-

ure 7C). Because miRNA often have multiple related target

genes, we first generated normalized enrichment scores for

252 BTMs on a per subject basis by performing ssGSEA on

the transcriptomic data. We then performed correlation analysis

between all miRNA-BTM pairs, revealing groups of modules that

appear to be regulated together by several miRNA (Figure 7D) on

day 1 after vaccination.

Finally, we used the TargetScan miRNA database (Garcia

et al., 2011) to identify the genes in a given module predicted

to be targets of negatively correlating miRNAs. Of particular in-

terest was the regulation of module M75-antiviral interferon
Imm
signature (Figure 7E) on day 1 after vaccination, because the

interferon pathway plays a key role during the innate immune

response. This miRNA-mRNA network suggests potential novel

regulators of the interferon response after vaccination, such

as miR-424. This miRNA was predicted to target OAS3, a 20-
50-oligoadenylate synthase involved in viral RNA degradation

(Samuel, 2001), as well as CXCL10, an important chemokine

induced by IFN-g that serves as a chemoattractant for lympho-

cytes (Dufour et al., 2002).

DISCUSSION

In this paper we were able to identify shared and consistent mo-

lecular signatures of immunogenicity to TIV, across five influenza

vaccine seasons. At day 1 after vaccination, the pathways posi-

tively associated with the later antibody response revealed

a strong innate response marked by expression of interferons

and activation of dendritic cells. This response was also

observed on day 3, with enrichment of TLR signaling and antigen

presentation. By day 7, there was a strong signature from the

expansion of plasmablasts. Using the same modules in a single

sample approach as inputs to an artificial neural network classi-

fier allowed us to successfully predict antibody responses to

vaccination across all seasons included in our study. Using

pathway-level features as predictors of immune response is a

promising approach to not only reduce the variability in gene

expression across influenza seasons but also to provide

improved biological context to the predictive signatures.

In addition, we were able to establish baseline signatures

related to B and T cell expression that were associated with an

increased antibody response at day 28 after vaccination. These
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signatures were validated in two independent datasets, confirm-

ing that they are not specific to strain or study and are consistent

with previous findings that showed that the frequency of B cell

and T cell subsets at baseline was predictive of day 28 antibody

responses (Tsang et al., 2014). Therefore, the increased statisti-

cal power of our dataset allowed us to identify relatively weak

baseline transcriptional differences that were detectable only us-

ing flow cytometry in previous studies.

Our analysis of responses in young and elderly subjects re-

vealed important aspects about the relationship between

immunosenescence and vaccine response. We observed that

although the elderly exhibit diminished B cell responses after

vaccination, they also have enhanced NK cell and monocyte

numbers compared to young. Furthermore, the elderly displayed

increased frequency and activation of cytotoxic NK cells, as well

as increased CCR5 but diminished CD86 on proinflammatory

monocytes. Previous studies have shown that although the NK

cell population increases with age, there are concurrent changes

in the receptors of these cells, including decreases in the acti-

vating receptors NKp30 and NKp46 (Almeida-Oliveira et al.,

2011). NKp30 is involved in crosstalk with dendritic cells (Walzer

et al., 2005), and NKp46 has been shown to bind to influenza

hemagglutinin to allow NK-cell-mediated recognition of influ-

enza-virus-infected cells (Mandelboim et al., 2001), suggesting

potential mechanisms by which NK cells might regulate adaptive

immunity. Most importantly, monocytes were also increased

in the elderly before vaccination, and our baseline analysis

revealed a negative association between day 0 monocyte

expression and magnitude of antibody response. This indicates

a potential connection between the baseline state of the immune

system in the elderly and reduced responsiveness to vaccina-

tion. Together these results suggest potential mechanisms by

which changes to the innate response in the elderly might result

in diminished antibody responses to vaccination.

In addition, we also investigated the signatures associated

with the longevity of antibody responses. Although the goal of

all vaccines is to induce lasting immunity, waning immunity to

vaccination is a major issue in vaccinology (Pichichero, 2009).

Indeed, we observed a significant drop in antibody titers in a ma-

jority of subjects within 6 months of vaccination. By comparing

the relative persistence of the day 180 antibody responses

with BTM-normalized enrichment scores, we saw that the

expansion of plasmablasts, which plays an important role in

the development of the day 28 antibody response, had little ef-

fect on response longevity. Instead, we observed a potential

role for cell movement and adhesion in maintaining a persistent

antibody response. This transcriptional signature might be an in-

dicator of migration of plasmablasts into the bone marrow, a

crucial step in the generation of long-lived plasma cells (Rad-

bruch et al., 2006). This analysis demonstrates the role that initial

immune processes, as early as 3 days after vaccination, can

have in shaping the antibody response as much as 6 months

later.

Finally, we sought to explore how the previously examined

transcriptional responses to vaccination might be regulated, in

particular through the expression of miRNAs. miRNAs have

been shown to play an important role in modulating the signaling

pathways of the immune system (Lodish et al., 2008), but their

role in vaccine response has not been studied. By integrating
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transcriptomic and miRNA expression data, we were able to

identify several potential miRNA regulators of the interferon

response after vaccination, such as miR-424. Previous studies

have shown that absence of regulation of interferon signaling

by miRNA can result in impaired CD8 T cell responses (Gracias

et al., 2013). These results demonstrate how the balance be-

tween positive and negative signals controlling the innate

response is necessary for a successful adaptive response and

underscore the importance of understanding the way in which

miRNAs help achieve this balance.

In summary, this longitudinal study across five influenza

seasons provided the opportunity to identify conserved mole-

cular elements present in immune response to TIV vaccina-

tion. Our pathway-level analyses revealed previously unknown

mechanisms that contribute to impaired responses to influenza

vaccination in the elderly. These systems approaches can help

delineate the molecular responses to vaccination in other immu-

nocompromised populations, such as infants and HIV-positive

individuals. They might also offer insights into the pathways by

which adjuvants improve vaccine response. By integrating this

knowledge, we will be able to provide a more complete picture

of how the immune system responds to vaccination and help

guide the development of the next generation of vaccines that

provide long-lasting immunogenicity and better protection of

at-risk populations.

EXPERIMENTAL PROCEDURES

Human Subjects and Specimen Collection

A total of 212 subjects were vaccinated with TIV during the 2007–2011 influ-

enza seasons. Written informed consent was obtained from each subject

with institutional review and approval from the Emory University Institutional

Review Board. Blood samples were collected at baseline and on days 3, 7,

28, and 180 days after vaccination. Peripheral blood mononuclear cells

(PBMCs) were isolated from fresh blood and stored in liquid nitrogen

(–210�C). Detailed vaccination and sample collection procedures can be found

in the Supplemental Experimental Procedures. In general, the health of all

subjects was under control with no severe symptoms. Presence of relevant

co-morbidities was recorded and T2D patients did not have cancer, or major

infectious or autoimmune diseases, for at least 12 months prior to enrollment.

Diabetic individuals were 20 years or older and with an established diagnosis

of T2D for more than 6 months. Individuals had to be free of influenza and

of any symptoms associated with respiratory infections at the time of enroll-

ment. All T2D patients were under metformin treatment. Pregnancy and docu-

mented current substance and/or alcohol abuse were also exclusion criteria,

as well as use of medicines known to alter the immune response, such as

high-dose corticosteroids, within 6months prior to enrollment. As ‘‘co-morbid-

ities,’’ a few patients had hypertension, hyperlipidemia, pain (joint, back), or

hypothyroidism.

RNA Isolation and Microarray Analysis

Total RNA from PBMCs (�1.53 106 cells) was purified using Trizol (Invitrogen,

Life Technologies Corporation) according to the manufacturer’s instructions.

Samples were checked for purity and hybridized on Human U133 Plus 2.0 Ar-

rays (Affymetrix). Microarray intensity data were normalized by RMA (Irizarry

et al., 2003) for each cohort separately. Pathway analyses were performed

using GSEA (Subramanian et al., 2005). In this 5-year analysis, we utilized a

multi-step DAMIP strategy as described in the Supplemental Experimental

Procedures (Figure S3). Classification rules or signatures associatedwith three

to five discriminatory genes were identified. We reported the classification

rules in which the predictive accuracies of HAI response in all other seasons

are at least 70%. This resulted in a total of 175 predictive rules, with accuracy

ranging between 80.0% and 87.3% (Table S1, Figure S3). For each of these

rules, a second layer of blind prediction was then performed on the remaining
c.



blind test set (15% of subjects from each season) (Table S2). Detailed descrip-

tion of analyses can be found in the Supplemental Experimental Procedures.

Flow Cytometry Analysis

2–33 106 PBMCswere thawed and stained with live/deadmarker (Alexa Fluor

430, Life Technologies) to exclude dead cells. Cells were then stained with an

appropriate antibody cocktail. Cells were washed, fixed, and analyzed on the

LSRII flow cytometer (BD). All flow cytometry analysis was done with FlowJo

(Treestar). Blood NK cells were defined within the live singlets gate

CD3�CD4�CD19�CD14� cells as the CD56++ NK, CD56++CD16+ NK, and

CD56dimCD16++ NK. The CD56++CD16+ subset is considered an intermediate

population in transition from the CD56++ to the CD56dimCD16++ subset (Béziat

et al., 2011). Monocytes were defined within the live singlet CD3�CD19�

PBMC as the CD14+CD16�, CD14+CD16+, and CD14dimCD16++ monocytes.

The detailed staining procedures and list of antibodies are presented in the

Supplemental Experimental Procedures.

ACCESSION NUMBERS

The GEO accession numbers for the microarray data reported in this paper are

GSE: GSE74817 (influenza seasons 2009–2012) and GSE29619 (influenza

seasons 2007–2009).
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